Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Hydroxycyclobutane-1-carboxylic acid

Richard Betz and Peter Klüfers*

Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5-13 (Haus D), 81377 München, Germany Correspondence e-mail: kluef@cup.uni-muenchen.de

Received 28 August 2007: accepted 6 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.079; data-to-parameter ratio = 8.0.

The title compound, $C_5H_8O_3$, was prepared as a potentially chelating molecule bearing the conformationally rigid cyclobutane group. The cyclobutane ring is arranged perpendicular to the carboxyl group. In the polar crystal structure, each molecule exhibits four hydrogen-bonded contacts to neighbouring molecules. Instead of the formation of typical carboxylic acid dimers, an infinite hydrogen-bonded chain with alternating O-H and O=C-O-H units is observed.

Related literature

For the synthesis, see Becker et al. (2001). The pattern of hydrogen bonding differs from that observed for the homologues, 1-hydroxycyclopropane-1-carboxylic acid (Betz & Klüfers, 2007a) and 1-hydroxycyclopentane-1-carboxylic acid (Betz & Klüfers, 2007b). For a similar case of high displacement parameters in a cyclobutane ring, see Muranishi & Okabe (2004). For hydrogen-bonding graph-set notation, see Bernstein et al. (1995).

Experimental

Crystal data C₅H₈O₃ $M_r = 116.12$ Trigonal, R3c a = 10.158 (5) Å c = 28.747(5) Å $V = 2568.9 (18) \text{ Å}^3$

Z = 18Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 293 (2) K $0.25 \times 0.20 \times 0.16 \; \rm mm$

Data collection

Nonius KappaCCD diffractometer	657 independent reflections		
Absorption correction: none	629 reflections with $I > 2\sigma(I)$		
2401 measured reflections	$R_{int} = 0.013$		
Refinement			
$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of		
wR(F ²) = 0.079	independent and constrained		
S - 1.07	refinement		

 $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.11 \text{ e} \text{ Å}^{-3}$

Table 1

657 reflections

82 parameters 1 restraint

S

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O12^i$	0.85 (4)	2.07 (4)	2.895 (2)	163 (3)
$O2-H2\cdots O2^i$	0.85 (4)	2.51 (3)	3.037 (3)	121 (3)
$O11 - H11 \cdots O2^{ii}$	0.92 (4)	1.74 (4)	2.6488 (19)	170 (4)

Symmetry codes: (i) -x + y, -x, z; (ii) $-y + \frac{1}{3}$, $-x + \frac{2}{3}$, $z + \frac{1}{6}$.

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors thank Dr Peter Mayer for professional support. The coeditor (H. Schmalle) is acknowledged for his advice regarding graph theory.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2033).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Becker, H. G. O., Beckert, R., Domschke, G., Fanghänel, E., Habicher, W. D., Metz, P., Pavel, D. & Schwetlick, K. (2001). Organikum - Organischchemisches Grundpraktikum. Weinheim, Germany: Wiley-VCH.
- Bernstein, J., Davies, R. E. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34. 1555-1573
- Betz, R. & Klüfers, P. (2007a). Acta Cryst. E63, 03891.
- Betz, R. & Klüfers, P. (2007b). Acta Cryst. E63, 03932.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Muranishi, Y. & Okabe, N. (2004). Acta Cryst. C60, m47-m50.
- Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4032 [doi:10.1107/S1600536807043747]

1-Hydroxycyclobutane-1-carboxylic acid

R. Betz and P. Klüfers

Comment

The title compound, $C_5H_8O_3$, was prepared as a potential chelating molecule bearing the conformational rigid cyclobutane group.

The cyclobutane ring adopts a perpendicular orientation to the carboxyl group (Fig. 1). One carbon atom of the cyclobutane ring shows a comparatively high anisotropic displacement parameter – a finding, which is in agreement with the results obtained for a palladium complex including cyclobutane moieties (Muranishi & Okabe, 2004). The observed bond lengths are in agreement with valence considerations. Intermolecular hydrogen bonds determine the crystal structure. Due to the trigonal 3-axes symmetry, trimer ring systems with graph set notation $R_3^{3}(5)$ and infinite chains C(5) (Bernstein *et al.*, 1995) form the three-dimensional network. The formation of dimeric units upon hydrogen-bond formation – as is apparent in the structures of 1-hydroxycyclopropane-1-carboxylic acid (Betz & Klüfers, 2007*a*) and the cyclopentane analogue (Betz & Klüfers, 2007*b*) – is not observed. Instead, infinite bonding sequences of the type (…O=C—O–H…O–H…)_n with alternating carboxy and hydroxy functions are formed.

Experimental

The title compound was prepared according to standard procedures (Becker *et al.*, 2001) upon acidic hydrolysis of the cyanohydrin of cyclobutanone. Crystals suitable for X-ray analysis were directly obtained from the crystallized reaction product.

Refinement

All H atoms were located in a difference map and refined as riding on their parent atoms. One common isotropic displacement parameter for all H atoms was refined to $U_{iso}(H) = 0.062$ (3).

Due to the absence of significant anomalous scattering the absolute structure factor, which is -1.2 with an estimated standard deviation of 1.1 for the unmerged data set, is meaningless. Thus, Friedel opposites (327 pairs) have been merged.

Figures

Fig. 1. The molecular structure of (I), with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

1-Hydroxycyclobutane-1-carboxylic acid

Crystal data	
C ₅ H ₈ O ₃	<i>Z</i> = 18
$M_r = 116.12$	$F_{000} = 1116$
Trigonal, <i>R</i> 3 <i>c</i>	$D_{\rm x} = 1.351 {\rm ~Mg~m}^{-3}$
Hall symbol: R 3 -2"c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.158 (5) Å	Cell parameters from 8387 reflections
b = 10.158 (5) Å	$\theta = 3.1 - 27.5^{\circ}$
c = 28.747 (5) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 293 (2) K
$\beta = 90^{\circ}$	Block, colourless
$\gamma = 120^{\circ}$	$0.25\times0.20\times0.16~mm$
$V = 2568.9 (18) \text{ Å}^3$	

Data collection

Nonius KappaCCD diffractometer	629 reflections with $I > 2\sigma(I)$
Radiation source: rotating anode	$R_{\rm int} = 0.013$
Monochromator: MONTEL, graded multilayered X-ray optics	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.7^{\circ}$
φ/ω–scan	$h = -13 \rightarrow 13$
Absorption correction: none	$k = -10 \rightarrow 10$
2401 measured reflections	<i>l</i> = −37→37
657 independent reflections	

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0483P)^2 + 0.8981P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.029$	$(\Delta/\sigma)_{max} < 0.001$
$wR(F^2) = 0.079$	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.07	$\Delta \rho_{min} = -0.11 \text{ e } \text{\AA}^{-3}$
657 reflections	Extinction correction: SHELXL, Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
82 parameters	Extinction coefficient: 0.0040 (11)
1 restraint	
Primary atom site location: structure-invariant direct methods	
Secondary atom site location: difference Fourier map	
Hydrogen site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O2	0.18848 (17)	0.15037 (16)	0.00859 (5)	0.0401 (4)
H2	0.160 (4)	0.079 (4)	0.0286 (12)	0.070 (9)*
011	0.2872 (2)	0.4282 (2)	0.09671 (6)	0.0553 (5)
H11	0.240 (4)	0.439 (4)	0.1225 (13)	0.075 (10)*
012	0.06620 (18)	0.22283 (19)	0.07944 (6)	0.0501 (4)
C1	0.1989 (2)	0.3086 (2)	0.07142 (6)	0.0351 (4)
C2	0.2812 (2)	0.2928 (2)	0.02965 (6)	0.0324 (4)
C3	0.3344 (3)	0.4280 (2)	-0.00422 (7)	0.0412 (5)
H31	0.3220	0.3988	-0.0368	0.049*
H32	0.2911	0.4922	0.0023	0.049*
C4	0.4967 (3)	0.4924 (3)	0.01362 (11)	0.0609 (6)
H41	0.5287	0.5773	0.0348	0.073*
H42	0.5711	0.5169	-0.0109	0.073*
C5	0.4496 (3)	0.3412 (3)	0.03797 (9)	0.0459 (5)
H51	0.4778	0.3519	0.0706	0.055*
H52	0.4821	0.2784	0.0218	0.055*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	0.0480 (8)	0.0331 (7)	0.0344 (7)	0.0166 (6)	0.0051 (6)	-0.0051 (6)
011	0.0485 (9)	0.0572 (10)	0.0458 (9)	0.0155 (8)	0.0085 (7)	-0.0200 (7)
O12	0.0431 (8)	0.0510 (9)	0.0465 (8)	0.0163 (7)	0.0117 (6)	-0.0083 (7)
C1	0.0388 (10)	0.0363 (9)	0.0316 (9)	0.0199 (8)	0.0040 (7)	0.0000 (7)
C2	0.0372 (9)	0.0332 (9)	0.0291 (8)	0.0193 (7)	0.0024 (7)	-0.0013 (7)
C3	0.0492 (11)	0.0400 (10)	0.0381 (9)	0.0250 (10)	0.0093 (8)	0.0063 (8)
C4	0.0431 (13)	0.0529 (15)	0.0701 (15)	0.0115 (10)	0.0060 (12)	0.0073 (12)
C5	0.0402 (11)	0.0539 (12)	0.0503 (11)	0.0284 (10)	-0.0026 (9)	-0.0069 (9)
Geometric par	ameters (Å, °)					
O2—C2		1.409 (2)	C3—	C4	1.52	27 (4)
O2—H2		0.85 (4)	C3—	H31	0.97	700

supplementary materials

O11—C1	1.311 (2)	С3—Н32	0.9700
O11—H11	0.92 (4)	C4—C5	1.531 (4)
O12—C1	1.207 (2)	C4—H41	0.9700
C1—C2	1.517 (2)	C4—H42	0.9700
C2—C3	1.544 (3)	С5—Н51	0.9700
C2—C5	1.544 (3)	С5—Н52	0.9700
C2—O2—H2	110 (2)	С2—С3—Н32	113.7
C1—O11—H11	114 (2)	H31—C3—H32	111.0
O12-C1-O11	124.26 (18)	C3—C4—C5	89.70 (18)
O12—C1—C2	123.42 (17)	C3—C4—H41	113.7
O11—C1—C2	112.28 (17)	C5—C4—H41	113.7
O2—C2—C1	109.16 (15)	C3—C4—H42	113.7
O2—C2—C3	113.53 (15)	C5—C4—H42	113.7
C1—C2—C3	111.77 (15)	H41—C4—H42	110.9
O2—C2—C5	117.34 (17)	C4—C5—C2	89.39 (17)
C1—C2—C5	115.15 (16)	C4—C5—H51	113.7
C3—C2—C5	88.59 (15)	С2—С5—Н51	113.7
C4—C3—C2	89.54 (17)	С4—С5—Н52	113.7
C4—C3—H31	113.7	С2—С5—Н52	113.7
С2—С3—Н31	113.7	H51—C5—H52	111.0
C4—C3—H32	113.7		
O12—C1—C2—O2	-11.5 (3)	C1—C2—C3—C4	104.08 (19)
O11—C1—C2—O2	170.40 (18)	C5—C2—C3—C4	-12.53 (19)
O12—C1—C2—C3	114.9 (2)	C2—C3—C4—C5	12.64 (18)
O11—C1—C2—C3	-63.2 (2)	C3—C4—C5—C2	-12.64 (18)
O12—C1—C2—C5	-146.0 (2)	O2—C2—C5—C4	128.41 (19)
O11—C1—C2—C5	35.9 (2)	C1—C2—C5—C4	-101.0 (2)
O2—C2—C3—C4	-131.90 (19)	C3—C2—C5—C4	12.50 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$	
O2—H2···O12 ⁱ	0.85 (4)	2.07 (4)	2.895 (2)	163 (3)	
O2—H2···O2 ⁱ	0.85 (4)	2.51 (3)	3.037 (3)	121 (3)	
011—H11···O2 ⁱⁱ	0.92 (4)	1.74 (4)	2.6488 (19)	170 (4)	
Symmetry codes: (i) $-x+y$, $-x$, z; (ii) $-y+1/3$, $-x+2/3$, $z+1/6$.					

